Lesson 34

Describing Acid-Base Solutions

Key Words

related acid-base pair: acid and base that differ by one proton

Ka: ionization constant of an acid; it shows the relative

strength of acids

pH: scale that shows the concentration of H₃O+

KEY IDEAS

In acid-base reactions, protons—H⁺—move from one substance to another. Not all acids and bases lose or gain protons to the same degree. The extent of proton transfer determines acid or base strength. A pH number describes the concentration of hydrogen ions—H⁺—or hydronium ions—H₃O⁺.

Human blood is a slightly basic solution with a pH of about 7.4. Changes in the pH of the blood may occur when the body does not function properly. If the pH rises to near 8.0 or drops to below 6.8, the result can be fatal.

Proton Transfer. Recall that an acid is a proton donor. The proton, or H^+ , is accepted by a base, which is a proton acceptor. For example, in a reaction between H_2SO_4 and H_2O , a proton moves from the H_2SO_4 to the H_2O , forming H_3O^+ and HSO_4^- .

Equation 1 $H_2SO_4 + H_2O \longrightarrow H_3O^+ + HSO_4^$ acid base

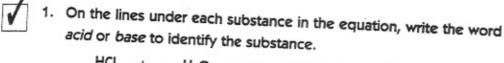
The H_2SO_4 is the acid because it donates a proton— H^+ . The H_2O is the base because it gains a proton— H^+ . As a result of the H_2O gaining a proton, H_3O^+ is formed.

The reverse of this reaction can also occur. In this case, a proton moves from the $\rm H_3O^+$ to the $\rm HSO_4^-$, forming $\rm H_2O$ and $\rm H_2SO_4$.

Equation 2 $H_3O^+ + HSO_4^- \longrightarrow H_2SO_4 + H_2O$ acid base

The H_3O^+ is an acid because it donates a proton— H^+ —to the HSO_4^- . The HSO_4^- is the base because it gains a proton— H^+ —from the H_3O^+ .

When the products of a chemical reaction react to reform the reactants, the reaction is called a reversible reaction. Equation 3 combines Equation 1 with Equation 2 as one equation, showing a reversible reaction.


Equation 3
$$H_2SO_4 + H_2O \Longrightarrow H_3O^+ + HSO_4^-$$

acid base acid base

Acid-base Pairs. The H₂SO₄ became HSO₄⁻ when it lost, or donated, a proton. After an acid has donated a proton, the substance remaining is a base. This base forms a related pair with that acid. So H₂SO₄ and HSO₄⁻ are a related acid-base pair. The acid and base in this pair differ by only one proton.

The $\rm H_2O$ became $\rm H_3O^+$ when it gained, or accepted, a proton. After a base has accepted a proton, the substance remaining is an acid. This acid forms a related pair with that base. So $\rm H_3O^+$ and $\rm H_2O$ are a related acid-base pair. The acid and base in this pair differ by only one proton. Study Fig. 34-1, which shows acid-base pairs for the reaction in Equation 3.

Fig. 34-1
$$H_2SO_4 + H_2O \rightleftharpoons H_3O^+ HSO_4^-$$
ACID BASE ACID BASE

acid/base pairs

Substances That Act As Acids or Bases. Some substances can act as either an acid or a base. When in the presence of an acid, such a substance acts as a base. When in the presence of a strong base, however, the same substance acts as an acid.

Water is an example of such a substance. When water donates a proton to NH_3 , which is a strong base, the water is an acid.

Equation 4
$$H_2O + NH_3 \longrightarrow NH_4^+ + OH^-$$

acid base

When water accepts a proton from HCl, which is an acid, the water is a base.

Equation 5
$$HCl + H_2O \longrightarrow H_3O^+ + Cl^-$$
 acid base

Water ionizes only slightly. When this happens, one water molecule donates a proton to another water molecule. Water, therefore, acts as both acid and base.

Equation 6
$$H_2O + H_2O \Longrightarrow H_3O^+ + OH^-$$
 acid base

3. What is one substance with which water acts as an acid? What is a substance with which water acts as a base?

SUOSIGILE MICH WILL			
(a)	and	(p)	

Ionization Constants. An ionization constant, K_a , is used to compare the relative strengths of acids. To compute K_a for an acid, the concentration of the ions is divided by the concentration of the acid. A strong acid yields a large concentration of ions. A weak acid produces few ions in comparison to the number of acid molecules. So the K_a values of strong acids are larger than the K_a values of weak acids.

The chart in Fig. 34-2 lists some acids, the bases with which they form related pairs, and K_a values. The strong acids are at the top of the chart. Compare phosphoric acid— H_3PO_4 —with acetic acid CH_3COOH . Phosphoric acid is the stronger acid and is higher on the chart. Also compare the K_a values of the two acids. The K_a of H_3PO_4 is 7.5×10^{-3} . This K_a is larger than the 1.8×10^{-5} value for CH_3COOH . A larger K_a means more ions and a stronger acid.

Fig. 34-2

		Stren	gths	of Acids	
Relate	ed a	cid-ba	sed	pairs	K_a
. ACID	ACID BASE				
HCl	=	H+	+	Cl-	large
HNO ₃	=	H^+	+	NO ₃ -	large
H ₂ SO ₄	=	H ⁺	+	HSO ₄	large
HSO ₄	=	H^+	+	SO ₄ 2-	1.2×10^{-2}
H_3PO_4	=	H+	+	H2PO4	7.5×10^{-3}
HNO ₂	=	H+	+	NO ₂ -	4.6 × 10 ⁻⁴
		H ⁺		F	3.5 × 10 ⁻⁴
CH ₃ COOH				CH ₃ COO-	1.8 × 10 ⁻⁵
H ₂ CO ₃				HCO ₃ -	4.3 × 10 ⁻⁷
HSO ₃	=	H+		SO ₃ ²⁻	1.1 × 10 ⁻⁷
		H+		HS-	9.5 × 10 ⁻⁸
H ₂ PO ₄ -				HPO ₄ 2-	6.2 × 10 ⁻⁸
NH ₄ +				NH ₃	5.7 × 10 ⁻¹⁰
HCO ₃ -				~	5.6 × 10 ⁻¹¹
HPO ₄ 2-	=	H+	+	PO43-	2.2 × 10 ⁻¹³
HS-		H+		-	1.3 × 10 ⁻¹⁴
H;O		H+			1.0 × 10 ⁻¹⁴

Acidity as pH. The acidity of solutions can be stated in terms of pH. Neutral solutions have a pH value of 7. Acidic solutions have pH values less than 7. Basic solutions have values greater than 7.

Mathematically pH is the negative logarithm, to the base 10, of the concentration of the hydronium ion-H₃O+. Brackets [] around a formula mean concentration in moles/liter.

$$pH = -log [H_3O^+]$$

When water ionizes, hydronium-H₃O+-and hydroxide-OH--ions are formed. Kw stands for the ionization constant of water. It has a value of

$$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$$

In pure water, $[H_3O^+] = [OH^-] = 1.0 \times 10^{-14}$. Therefore, the $[H_3O^+]$ and the [OH] must both be 1×10^{-7} because $(1 \times 10^{-7})(1 \times 10^{-7}) = (1 \times 10^{-14})$.

Substituting the concentration of 1×10^{-7} into Equation 7, you can calculate the pH of water as 7.00.

The pH of a solution can be easily found with a calculator. Use your calculator and the following procedure shown in Fig. 34-3.

Fig. 34-3

Repeat the procedure to find the pH of a 0.1 M HCl solution. See Fig 34-4.

Fig. 34-4

Enter 0.1

2. Then push

Then push

Answer is pH = 1.00

You can estimate pH using the system shown in Fig 34-5.

Fig. 34-5

- 1.0 × 10−3 -

If this number is exactly 1, then this number is the pH

- 5. (a) What is the pH of a solution with $[H_3O^+] = 1.0 \times 10^{-12}$?
 - (b) Is this solution an acid or a base?

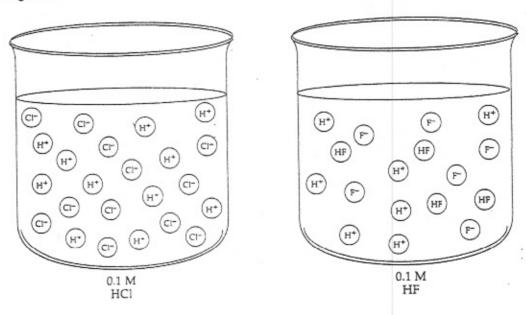

The scale in Fig. 34-6 shows $[H_3O^+]$ and pH. On this scale, you can see that a solution with $[H_3O^+] = 1 \times 10^{-7}$ has a pH of 7 and is neutral. Acidic solutions have a pH less than 7. Basic solutions have a pH greater than 7.

Fig. 34-6

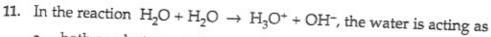
[H ₃ O+]	1×100	1 × 10-1	1 × 10-2	1 × 10-3	1 × 10-4	1×10-5	1 × 10-6	1 × 10-7	1×10-8	1 × 10-9	1 × 10-10	1 × 10-11	1 × 10-12	1 × 10-13	1 × 10-14
pН	0	1	2	3	4	5	6	7 Neutral	8	9	10	11	12	13	14

Fig. 34-7 compares a strong acid and a weaker acid. The strong acid—HCl — produces many ions in solution. The weaker acid—HF—produces fewer ions.

Fig. 34-7

Remember that pH is based upon the concentration of the hydronium (or hydrogen) ion. Low pH numbers mean a high hydronium (or hydrogen) ion concentration and a solution that is acidic. High pH numbers mean that many hydroxide ions are present and the solution is basic.

Check Your Understanding


Use the key terms from the beginning of this lesson to fill	in	the blanks.
6. An acid and a base that differ by only one		

- An acid and a base that differ by only one proton are called _____
- 7. Relative strengths of acids are compared using _
- 8. The concentration of H₃O+ in solution is expressed in terms of

Circle the correct term.

- 9. The ionization constant, K_a , for acetic acid— CH_3COOH —is
 - a. 1.2×10^{-2} . b. 3.5×10^{-4} .
- c. 1.8×10^{-5} .
- d. 5.6×10^{-11} .

- 10. A sample of water contains
 - a. equal concentrations of H₂O+ and OH-.
 - c. lower concentrations of H_3O^+ than OH^- .
- b. greater concentrations of H₃O⁺ than OH-.
- d. no H₃O+ or OH-.

- a. both an electron receiver and an electron donor.
- c. neither a proton donor nor a proton accepter.
- b. neither an electron receiver nor an electron donor.
- d. both a proton donor and a proton acceptor.

12. In the reaction $H_2S + H_2O \rightarrow H_3O^+ + HS^-$, a related acid base pair is

- H₂S and H₂O.
- b. H₂O and H₃O+.
- c. H_3O^+ and HS^- .
- d. H₂O and HS-.

13. What is the pH of a solution if the $[H_3O^+]$ is 1×10^{-8} ?

- a. 1
- b. 6
- c. 8

14. Pure water has a pH of

- a. 1×10^{-7} .
- b. 7.
- d. 1×10^{-14} .

